Completely biodegradable soyprotein–jute biocomposites developed using water without any chemicals as plasticizer

نویسندگان

  • Narendra Reddy
  • Yiqi Yang
چکیده

Soyprotein–jute fiber composites developed using water without any chemicals as the plasticizer show much better flexural and tensile properties than polypropylene–jute composites. Co-products of soybean processing such as soy oil, soyprotein concentrate and soy protein isolates are inexpensive, abundantly available and are renewable resources that have been extensively studied as potential matrix materials to develop biodegradable composites. However, previous attempts on developing soy-based composites have either chemically modified the co-products or used plasticizers such as glycerol. Chemical modifications make the composites expensive and less environmentally friendly and plasticizers decrease the properties of the composites. In this research, soyprotein composites reinforced with jute fibers have been developed using water without any chemicals as plasticizer. The effects of water on the thermal behavior of soyproteins and composite fabrication conditions on the flexural, tensile and acoustic properties of the composites have been studied. Soyprotein composites developed in this research have excellent flexural strength, tensile strength and tensile modulus, much higher than polypropylene (PP)–jute fiber composites. The soyprotein composites have better properties than the PP composites even at high relative humidity (90%).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biocomposites developed using water-plasticized wheat gluten as matrix and jute fibers as reinforcement

Biocomposites developed from wheat gluten using water without any chemicals as plasticizer and jute fibers as reinforcement have much better flexural and tensile properties than similar polypropylene composites reinforced with jute fibers. Wheat gluten is an inexpensive and abundant co-product derived from renewable resources and is biodegradable but non-thermoplastic. Previous attempts at deve...

متن کامل

Effect of Chemical Treatments on the Physical Properties of Non-woven Jute/PLA Biocomposites

Biocomposites based on poly(L-lactic acid) (PLA) and non-woven jute fabrics (NWJF) were fabricated by sandwiching non-woven jute mat between PLA sheets. First, composites were fabricated with various weight proportions of jute fabric (5, 10, 20, and 30 wt.%) with the PLA matrix, and the effect of fabric loading on their mechanical properties was investigated. Higher mechanical properties were f...

متن کامل

Impact of Maleic Anhydride, Nanoclay, and Silica on Jute Fiber-reinforced Polyethylene Biocomposites

Jute fiber/polyethylene biocomposites were prepared using a hot press molding technique. The effects of maleic anhydride, clay, and silica on the physical, mechanical, and thermal properties of jute fiber-reinforced polyethylene (PE) biocomposites with different fiber loadings (5, 10, 15, and 20 wt.%) were investigated. The biocomposites were characterized by Fourier transform infrared spectros...

متن کامل

Bi-layer Hybrid Biocomposites: Chemical Resistant and Physical Properties

Bi-layer hybrid biocomposites were fabricated by hand lay-up technique by reinforcing oil palm empty fruit bunch (EFB) and jute fibre mats with epoxy matrix. Hybrid composites were prepared by varying the relative weight fraction of the two fibres. The physical (void content, density, dimensional stability), and chemical resistant properties of hybrid composites were evaluated. When the jute fi...

متن کامل

Creep Behavior of Poly(lactic acid) Based Biocomposites

Polymer composites containing natural fibers are receiving growing attention as possible alternatives for composites containing synthetic fibers. The use of biodegradable matrices obtained from renewable sources in replacement for synthetic ones is also increasing. However, only limited information is available about the creep behavior of the obtained composites. In this work, the tensile creep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013